
The worst Hardware-
Security-Model vulnerabilities. 
And how you can overcome them 
with these clever steps.



HSMs are cryptographic processors with built-in hardware security features and, in 
some instances, with cryptographic accelerators capable of fast modular exponen-
tiation, elliptic-curve scalar multiplication, and other crypto-specifi c arithmetic ope-
rations. The main purpose of such a device is the secure, tamper-resistant storage 
and management of cryptographic keys and allowing applications to use these keys 
without necessitating their extraction. HSMs range from smartcards with basic cryp-
tographic functionalities to full-fl edged LAN-based rack units, capable of performing 
vast numbers of concurrent operations. In common parlance, and throughout the 
rest of this work, the term HSM refers to the latter.

Traditionally, HSMs were used for banking applications because of various compli-
ance requirements as well as the need for high concurrency. Essentially, HSMs are 
relevant for all scenarios where storing and using long-term cryptographic keys in a 
secure manner (i.e. protected against both logical and physical attacks) are require-
ments. More recently, other areas where HSMs have found application are Public Key 
Infrastructures (PKIs), e-commerce systems, and DNS Security Extensions (DNSSEC). 
In keeping with other areas of application development, cloud computing solutions 
for HSMs have become more ubiquitous and accessible for the consumer. HSMs in 
the cloud have found several applications, ranging from the traditional (e.g. as a root 
of trust) to more cloud-oriented approaches, most notably:

1 Introduction As security threats from parties ranging from individuals to state-backed actors 
grow more common-place, so too do security-fi rst approaches to application de-
velopment. This leads to hardware-based security solutions such as HSMs fi nding 
application in more contexts where such approaches were traditionally thought of 
as overly complex. As we will see in the next chapter, the complexity of integrating 
HSMs is, in fact, signifi cant. At the same time, in many situations, discounting this 
integration due to its diffi culty is not a luxury that can be afforded. In this work, 
we propose several solutions meant to mitigate these effects and enable a more 
straight-forward and secure integration of HSMs. 

Integrating HSM functionality into an application often proves a complex task. 
Issues range from vulnerabilities enabled by HSM standard specifi cations to de-
viations from the standards introduced by various manufacturers, and the need 
for specialized knowledge. This can cause the development process to slow sig-
nifi cantly, at the same time resulting in software vulnerable to targeted attacks 
against the underlying HSM specifi cation itself. In this chapter, we discuss four 
common pitfalls: 

2 Common pitfalls of HSM integration

� Scaling: collaborative, concurrent utilization of multiple HSMs to handle large
amounts of traffi c 1. 

� Key management service (KMS): provides access to a shared pool of keys to
multiple instances of the same or different applications. KMSs often exclusively
offer key distribution and/or generation, but no cryptographic functionalities, 
e.g. Azure KeyVault, AWS KMS.

� Cloud of Secure Elements: aiming to provide trusted computing resources to
mobile and cloud applications 2 .

� Data deduplication: ensuring that data persisted by cloud providers is not
stored multiple times unnecessarily, even if uploaded by different users. Implies
nontrivial processing if the data are to be stored in an encrypted manner 3.

Problem

API vulnerabilities Extraction of sensitive data is 
made possible.

Chapter 3.1: Automatic vulnera-
bility detection and prevention.

Different standard 
implementations

Vendor lock-in, as migration to 
new device implies signifi cant 
code adjustments.

Chapter 3.2: Automatic handling 
of implementation differences.

High requirement for 
technical expertise

Slow development, as engineers 
must focus on cryptographic and 
integrative rather than business 
functionality.

Chapter 3.3: Simplifi ed access 
to cryptographic functionality.

Diffi cult choice of HSM 
fl avour

Choosing an HSM which does 
not satisfy one’s requirements 
can lead to unsatisfactory per-
formance or unnecessary admi-
nistration overhead.

Chapter 3.4: Comparison of 
various devices’ strengths and 
weaknesses.

Effect Solution
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The PKCS #11 specifi cation4, nicknamed `Cryptoki`, which handles the communi-
cation with hardware cryptographic modules, has stood the test of time, having 
fi rst been proposed in 1994, and has since become the de-facto standard for 
integrating HSMs with software. While most manufacturers also offer libraries to 
access the device via various other interfaces (such as JCA/JCE or Microsoft CAPI), 
these libraries are often mere abstraction layers, mapping cryptographic requests 
to relevant PKCS #11 calls. In short, for most devices, there is no avoiding the 
Cryptoki API. 

Despite its popularity and staying power, the PKCS #11 standard is not without its 
faults, nor are many of its implementations. Vulnerabilities fall into one of three 
categories: 

Various studies analysing the standard’s security as well as that of many popular 
HSMs have been conducted5, showing that many well-known vulnerabilities can 
be exploited even in modern devices. In this work, we focus on nine vulnerabilities:

2.1 Vulnerabilities to API-level exploits

Whether maliciously or accidentally, performing operations that exploit these 
vulnerabilities can lead to exposing cryptographic keys which should otherwi-
se remain securely within the protection capabilities of the HSM, or to decoding 
ciphertexts without having access to the corresponding keys, thus severely under-
mining the security expected of HSMs. 

1. API design: faults in the API specifi cation that allow the extraction of sensitive
information in specifi c circumstances

2. Non-compliant implementations: the standard is not followed, opening a speci-
fi c device to various attack vectors. 

3. Usage errors: the cryptographic mechanisms are used incorrectly, which leads
to a weakening of the underlying algorithms. 

ID

W1 API design Key extraction by inadequate key separation: allowing 
keys to be exported in plaintext by wrapping6 them with 
keys which can also be used to decrypt data. 

W2 API design Trojan wrapped key: allow the extraction of keys by wrap-
ping them using a trojan key created by unwrapping and 
granting it permissions to wrap other keys. 

W3 API design Trojan public key: allow the extraction of keys by wrap-
ping them using an imported public key, for which an 
attacker holds the corresponding private key. 

W4 API design Weaker key wrapping: wrap a secure key using an insecure 
one (i.e. wrapping an AES key with a DES key), thus redu-
cing its bit-security.  

W5 Non-compliant impl. Neglection of security attributes: device ignores attributes 
marking keys as sensitive, allowing them to be exposed in 
plaintext. 

W6 Non-compliant impl. Unauthorised attribute change: device allows modifi ca-
tion of immutable attributes, possibly exposing sensitive 
information. 

W7 Non-compliant impl. Incorrect security attribute carryover: attributes are not 
set correctly when copying or deriving a key. 

W8 Usage errors Outdated cryptographic mechanisms: using algorithms 
which can be broken in feasible time. 

W9 Usage errors Insecure mechanism usage: incorrect initialisation of 
cryptographic mechanism, by e.g. not setting an initialisa-
tion vector for the AES-CBC encryption scheme, enabling 
attacks capable of gaining access to the plaintext.  

Type Description

http://docs.oasis-open.org/pkcs11/
pkcs11-curr/v2.40/os/pkcs11-curr-v2.40-os.html 

e.g.: J. Clulow. “On the security of PKCS# 11.”, S. Delaune, 
S. Kremer, and G. Steel. “Formal analysis of PKCS# 11.”, M. 

Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. “Attacking 
and fi xing PKCS# 11 security tokens.”
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   Wrapping is the process of encrypting a key using another key. Unwrapping is decrypting a ciphertext corresponding to a cryptographic key and using the result as a key. 6
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While the Cryptoki specifi cation aims to standardise the communication with 
cryptographic devices, it also opens the possibility for manufacturers to introduce 
custom mechanism defi nitions, called vendor-defi ned mechanisms, even for un-
derlying cryptographic algorithms already covered by standard ones. Furthermore, 
other variables in the usage of HSMs (such as maximum buffer sizes) vary from 
one manufacturer to another. Finally, the error handling mechanisms also vary 
across vendors, resulting in differing error codes for the same issues. These dif-
ferences, unless explicitly handled, slow down development even for experienced 
engineers, since each manufacturer ships devices with own idiosyncrasies which 
must be examined individually before proceeding with the implementation. They 
also result in codebases which are virtually vendor locked-in and cannot be easily 
migrated to other devices.  

While there is a multitude of HSM devices and equivalent cloud services on the 
market, their precise technical capabilities (such as maximum throughput for va-
rious cryptographic algorithms or storage capacity) are often non-transparent. 
Even a question as fundamental as the choice between a cloud service and an 
on-premise solution is plagued by unknowns. Most relevant information, such as 
the complexity of administrative responsibilities, only comes to light during the 
initial setup, while aspects like security concerns, such as third-party access to 
stored keys or vulnerability to API-level weaknesses, remain hidden even beyond 
this phase. Like with most choices surrounding computational infrastructure, there 
is not a “catch-all” solution, ideal regardless of requirements. Unlike many such 
choices, there are few data points regarding HSMs publicly available, making a 
choice that optimally suits one’s requirements diffi cult. 

Finally, using the cryptographic functionality offered by HSMs requires extensive 
knowledge about the used API, the types and acceptable values for parameters 
required for mechanism initialisation as well as various other workfl ows defi ned 
by the standard (such as authentication, customization of parallelism, multi-part 
operations, etc.). Furthermore, many cryptographic mechanisms, if improperly 
initialised, or if used under unfavourable conditions, may cause the leaking of 
sensitive information. Thus, a software developer looking to integrate an HSM in 
their application must not only possess expertise with regards to cryptographic 
algorithms, but also detailed knowledge of the mode of operation of the used 
cryptographic devices. 

2.2 Differences in standard implementations 
across manufacturers

2.4 Deciding between various devices based 
on requirements

2.3 Requirement of specialised expertise

Since much of the complexity surrounding the integration of HSMs is independent 
of higher-level use-cases, we separated this integration into its own library which 
aims to avoid pitfalls commonly found in these scenarios, from the prevention 
of vulnerabilities to facilitating the use of cryptographic mechanisms via deve-
loper-friendly interfaces. Presently, four devices are supported: nCipher Connect 
XC Base, AWS CloudHSM, Azure Dedicated HSM (using a Gemalto SafeNet Luna 7 
model A7907) and the Ultimaco CryptoServer. 

3 A more secure, versatile and easy-to-use 
 approach 

by the standard (such as authentication, customization of parallelism, multi-part 
operations, etc.). Furthermore, many cryptographic mechanisms, if improperly 
initialised, or if used under unfavourable conditions, may cause the leaking of 
sensitive information. Thus, a software developer looking to integrate an HSM in 
their application must not only possess expertise with regards to cryptographic 
algorithms, but also detailed knowledge of the mode of operation of the used 
cryptographic devices. 

https://azure.microsoft.com/en-us/services/azure-dedicated-hsm/ 7
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While the Cryptoki standard is structured in a way meant to avoid leaking sensiti-
ve information (such as private keys), it still leaves open many avenues of attack. 
Many of these are handled by the security community through principles of best 
practice (such as the principle of key separation, i.e. not using the same key for 
different purposes) and are thus left at the developer’s discretion. Other vulnera-
bilities relying on inexact implementations of the standard or on usage errors can 
also be exploited to extract sensitive material. 

This led us to the decision to implement a mechanism capable of automati-
cally detecting and preventing vulnerabilities. While the Cryptoki API itself is 
stateful, most of the exploits aiming to extract sensitive information rely on 
individual calls rather than the state of the device, making their detection rela-
tively straightforward and inexpensive. This type of detection implies comparing 
calls to HSMs to pre-defi ned patterns and raising alarms in case any matches are 
found. In select cases, more complex processing operations are required, such as 
fi nding a corresponding private key and examining its attributes when working 
with a public key. In order to strike a balance between security, development 
fl exibility, and performance, four security levels are defi ned, which ensure varying 
degrees of protection: 

The various preventions are particularly meant to enforce software quality stan-
dards, and thus prevent the accidental execution of cryptographic requests that 
would result in the disclosure of information intended to remain within the phy-

sical confi nes of the HSM. This mechanism would also prevent the execution of 
exploits using only interfaces offered by the application (e.g. REST APIs), it would 
not, however, offer additional protection against attackers with the means of using 
the PKCS #11 API to the HSM directly. For this purpose, the protections that are 
part of this library would have to be implemented directly onto the devices them-
selves (or at least in the dynamic library used to transport PKCS #11 requests to 
the device). Some manufacturers (e.g.  nCipher or Thales) do, in fact, ship their 
devices with various similar preventions, which may be a deciding factor when 
choosing a device.  

Finally, we also implemented a tool that automatically detects if a device is vul-
nerable by executing the corresponding exploits and verifying that the extracted 
information is correct. These results should be considered before an HSM choice 
is made.

3.1 Improving upon the standard – 
preventing vulnerabilities

� Level 0: No protection.

� Level 1: Enforcement of the Cryptoki standard, i.e. preventing vulnerabilities
caused by non-compliant implementations. Contains preventions for W5, W6, W7.

� Level 2: Enforcement of best practices. In addition, contains preventions for W1, 
W8, W9.

� Level 3: Maximum protection, which further restricts some operations, such as
granting certain privileges to imported keys. In addition, contains preventions
for W2, W3, W4. 

As described previously, there are several differences in the ways various manufac-
turers implement the PKCS #11 standard. One example is the generation of keys 
to be used when creating Message Authentication Codes, where nCipher devices 
require the use of vendor-defi ned mechanisms rather than the ones set by the 
standard. Other devices, such as the ones used by AWS CloudHSM set a maximum 
buffer size of 16KB, necessitating multiple operations to encrypt, hash or sign data 
blocks larger than this limit. Error handling for this HSM also deviates from the 
norm, some error codes being returned in circumstances not covered by the stan-
dard. Many other similar deviations can be found in the devices covered by this 
work, and we expect the list to grow with the addition of each new HSM.

If left unhandled, these types of differences would cause signifi cant complications 
when trying to migrate an application from one device to another. The basic under-
lying functionality can be performed by each device, albeit with slightly differently 
structured calls, so if these differences were handled explicitly and individually by 
a layer of abstraction functioning between the application’s logic and the device, 
migrating to a different HSM would have no effect on the codebase. Our library 
offers a vendor-agnostic API, handling the translation of high-level cryptographic 
requests to vendor-specifi c implementations of the PKCS #11 standard, and thus 
allowing developers to focus on functionality rather than hardware integration.  

3.2 Consolidating divergent standard implementations 
under a single API

would result in the disclosure of information intended to remain within the phy-

The various preventions are particularly meant to enforce software quality stan-
dards, and thus prevent the accidental execution of cryptographic requests that 
would result in the disclosure of information intended to remain within the phy-

work, and we expect the list to grow with the addition of each new HSM.

If left unhandled, these types of differences would cause signifi cant complications 
when trying to migrate an application from one device to another. The basic under-
lying functionality can be performed by each device, albeit with slightly differently 
structured calls, so if these differences were handled explicitly and individually by 
a layer of abstraction functioning between the application’s logic and the device, 
migrating to a different HSM would have no effect on the codebase. Our library 
offers a vendor-agnostic API, handling the translation of high-level cryptographic 
requests to vendor-specifi c implementations of the PKCS #11 standard, and thus 
allowing developers to focus on functionality rather than hardware integration.  

would result in the disclosure of information intended to remain within the phy-

3.1
  preventing vulnerabilities
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In addition to the intricacies of the PKCS #11 standard and the complications in-
troduced by its divergent implementations, most plain cryptographic APIs, like the 
one offered by JCA, require the user to have complex knowledge of the underly-
ing algorithms in question. Possible values for the various mechanism parameters 
(mode, padding, key size, used hash or mask generation functions, defi nitions of 
elliptic curves, etc.) must be known beforehand. Our library’s API takes advantage 
of IDEs’ code completion features in the initialization of mechanisms, while also 
simplifying high-level cryptographic requests (like encryption or decryption) to 
only necessitate a single call. These differences are illustrated in the following: 

The total amount of code necessary is reduced slightly, but our library’s API’s 
real advantage is given by the fact that there is a lower pre-requirement of 
knowledge to implement the same functionality. In the background, the relevant 
calls are translated either to PKCS #11 heading to the integrated HSM, or to 
JCA calls executed by the Bouncy Castle provider, depending on confi guration. 
Thus, simplifi ed testing of business logic is made possible, one which does not 
require connection to a physical device. In tandem, these features streamline 
development and testing. 

3.3 Developer-friendly interface to HSM functionality

As described in Chapter 2.4, deciding between different approaches to HSM infras-
tructure based on requirements is non-trivial and must often rely on scant infor-
mation.  For this purpose, we conducted an analysis of the four devices supported 
by our library in terms of various criteria: 

As we have seen throughout this paper, HSMs, while oftentimes indispensable, 
are also frequently very complex systems. From the choice of vendor, to the initial 
setup and regular maintenance activities, to the integration and testing of security 
applications, these devices require signifi cant, wide-ranging expertise. Our know-
ledge in this fi eld and approach to HSM management and usage result in faster, 
more effi cient and more secure development processes. 

Depending on the exact requirements, some criteria may be more relevant than ot-
hers, so the superiority of one device over another may change with requirements. 
Some of these comparisons 

3.4 Considering the pros and cons of various devices

4 Conclusion

� Performance with regards to their supported algorithms.

� Security (third party access, authentication mechanisms, vulnerability to explo-
its, additional protection mechanisms, etc.).

� Scalability and resilience.

� Storage capacity.

� Supported algorithms and APIs.

� Maintenance (backups, updates, monitoring, migration of keys, etc.).

� Partitioning (dividing keys into partitions to be used by different applications). 
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