
The worst Hardware-
Security-Model vulnerabilities.
And how you can overcome them
with these clever steps.

HSMs are cryptographic processors with built-in hardware security features and, in
some instances, with cryptographic accelerators capable of fast modular exponen-
tiation, elliptic-curve scalar multiplication, and other crypto-specifi c arithmetic ope-
rations. The main purpose of such a device is the secure, tamper-resistant storage
and management of cryptographic keys and allowing applications to use these keys
without necessitating their extraction. HSMs range from smartcards with basic cryp-
tographic functionalities to full-fl edged LAN-based rack units, capable of performing
vast numbers of concurrent operations. In common parlance, and throughout the
rest of this work, the term HSM refers to the latter.

Traditionally, HSMs were used for banking applications because of various compli-
ance requirements as well as the need for high concurrency. Essentially, HSMs are
relevant for all scenarios where storing and using long-term cryptographic keys in a
secure manner (i.e. protected against both logical and physical attacks) are require-
ments. More recently, other areas where HSMs have found application are Public Key
Infrastructures (PKIs), e-commerce systems, and DNS Security Extensions (DNSSEC).
In keeping with other areas of application development, cloud computing solutions
for HSMs have become more ubiquitous and accessible for the consumer. HSMs in
the cloud have found several applications, ranging from the traditional (e.g. as a root
of trust) to more cloud-oriented approaches, most notably:

1 Introduction As security threats from parties ranging from individuals to state-backed actors
grow more common-place, so too do security-fi rst approaches to application de-
velopment. This leads to hardware-based security solutions such as HSMs fi nding
application in more contexts where such approaches were traditionally thought of
as overly complex. As we will see in the next chapter, the complexity of integrating
HSMs is, in fact, signifi cant. At the same time, in many situations, discounting this
integration due to its diffi culty is not a luxury that can be afforded. In this work,
we propose several solutions meant to mitigate these effects and enable a more
straight-forward and secure integration of HSMs.

Integrating HSM functionality into an application often proves a complex task.
Issues range from vulnerabilities enabled by HSM standard specifi cations to de-
viations from the standards introduced by various manufacturers, and the need
for specialized knowledge. This can cause the development process to slow sig-
nifi cantly, at the same time resulting in software vulnerable to targeted attacks
against the underlying HSM specifi cation itself. In this chapter, we discuss four
common pitfalls:

2 Common pitfalls of HSM integration

� Scaling: collaborative, concurrent utilization of multiple HSMs to handle large
amounts of traffi c 1.

� Key management service (KMS): provides access to a shared pool of keys to
multiple instances of the same or different applications. KMSs often exclusively
offer key distribution and/or generation, but no cryptographic functionalities,
e.g. Azure KeyVault, AWS KMS.

� Cloud of Secure Elements: aiming to provide trusted computing resources to
mobile and cloud applications 2 .

� Data deduplication: ensuring that data persisted by cloud providers is not
stored multiple times unnecessarily, even if uploaded by different users. Implies
nontrivial processing if the data are to be stored in an encrypted manner 3.

Problem

API vulnerabilities Extraction of sensitive data is
made possible.

Chapter 3.1: Automatic vulnera-
bility detection and prevention.

Different standard
implementations

Vendor lock-in, as migration to
new device implies signifi cant
code adjustments.

Chapter 3.2: Automatic handling
of implementation differences.

High requirement for
technical expertise

Slow development, as engineers
must focus on cryptographic and
integrative rather than business
functionality.

Chapter 3.3: Simplifi ed access
to cryptographic functionality.

Diffi cult choice of HSM
fl avour

Choosing an HSM which does
not satisfy one’s requirements
can lead to unsatisfactory per-
formance or unnecessary admi-
nistration overhead.

Chapter 3.4: Comparison of
various devices’ strengths and
weaknesses.

Effect Solution

 J. Han, S. Kim, T. Kim, and D. Han. “Toward scaling hardware security module for emerging cloud services.” In: Proceedings of the 4th Workshop on System Software for Trusted
Execution. 2019, pp. 1–6.
 P. Urien. “Cloud of secure elements perspectives for mobile and cloud applications security.” In: 2013 IEEE Conference on Communications and Network Security (CNS).
IEEE. 2013, pp. 371–372.
 P. Puzio, R. Molva, M. Önen, and S. Loureiro. “ClouDedup: Secure deduplication with encrypted data for cloud storage.” In: 2013 IEEE 5th International Conference on Cloud
Computing Technology and Science. Vol. 1. IEEE. 2013, pp. 363–370.

1

2

3

2 3Cognizant Mobility _ Hardware-Security-Model Cognizant Mobility _ Hardware-Security-Model

The PKCS #11 specifi cation4, nicknamed `Cryptoki`, which handles the communi-
cation with hardware cryptographic modules, has stood the test of time, having
fi rst been proposed in 1994, and has since become the de-facto standard for
integrating HSMs with software. While most manufacturers also offer libraries to
access the device via various other interfaces (such as JCA/JCE or Microsoft CAPI),
these libraries are often mere abstraction layers, mapping cryptographic requests
to relevant PKCS #11 calls. In short, for most devices, there is no avoiding the
Cryptoki API.

Despite its popularity and staying power, the PKCS #11 standard is not without its
faults, nor are many of its implementations. Vulnerabilities fall into one of three
categories:

Various studies analysing the standard’s security as well as that of many popular
HSMs have been conducted5, showing that many well-known vulnerabilities can
be exploited even in modern devices. In this work, we focus on nine vulnerabilities:

2.1 Vulnerabilities to API-level exploits

Whether maliciously or accidentally, performing operations that exploit these
vulnerabilities can lead to exposing cryptographic keys which should otherwi-
se remain securely within the protection capabilities of the HSM, or to decoding
ciphertexts without having access to the corresponding keys, thus severely under-
mining the security expected of HSMs.

1. API design: faults in the API specifi cation that allow the extraction of sensitive
information in specifi c circumstances

2. Non-compliant implementations: the standard is not followed, opening a speci-
fi c device to various attack vectors.

3. Usage errors: the cryptographic mechanisms are used incorrectly, which leads
to a weakening of the underlying algorithms.

ID

W1 API design Key extraction by inadequate key separation: allowing
keys to be exported in plaintext by wrapping6 them with
keys which can also be used to decrypt data.

W2 API design Trojan wrapped key: allow the extraction of keys by wrap-
ping them using a trojan key created by unwrapping and
granting it permissions to wrap other keys.

W3 API design Trojan public key: allow the extraction of keys by wrap-
ping them using an imported public key, for which an
attacker holds the corresponding private key.

W4 API design Weaker key wrapping: wrap a secure key using an insecure
one (i.e. wrapping an AES key with a DES key), thus redu-
cing its bit-security.

W5 Non-compliant impl. Neglection of security attributes: device ignores attributes
marking keys as sensitive, allowing them to be exposed in
plaintext.

W6 Non-compliant impl. Unauthorised attribute change: device allows modifi ca-
tion of immutable attributes, possibly exposing sensitive
information.

W7 Non-compliant impl. Incorrect security attribute carryover: attributes are not
set correctly when copying or deriving a key.

W8 Usage errors Outdated cryptographic mechanisms: using algorithms
which can be broken in feasible time.

W9 Usage errors Insecure mechanism usage: incorrect initialisation of
cryptographic mechanism, by e.g. not setting an initialisa-
tion vector for the AES-CBC encryption scheme, enabling
attacks capable of gaining access to the plaintext.

Type Description

http://docs.oasis-open.org/pkcs11/
pkcs11-curr/v2.40/os/pkcs11-curr-v2.40-os.html

e.g.: J. Clulow. “On the security of PKCS# 11.”, S. Delaune,
S. Kremer, and G. Steel. “Formal analysis of PKCS# 11.”, M.

Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. “Attacking
and fi xing PKCS# 11 security tokens.”

4

5

 Wrapping is the process of encrypting a key using another key. Unwrapping is decrypting a ciphertext corresponding to a cryptographic key and using the result as a key. 6

4 5Cognizant Mobility _ Hardware-Security-Model Cognizant Mobility _ Hardware-Security-Model

While the Cryptoki specifi cation aims to standardise the communication with
cryptographic devices, it also opens the possibility for manufacturers to introduce
custom mechanism defi nitions, called vendor-defi ned mechanisms, even for un-
derlying cryptographic algorithms already covered by standard ones. Furthermore,
other variables in the usage of HSMs (such as maximum buffer sizes) vary from
one manufacturer to another. Finally, the error handling mechanisms also vary
across vendors, resulting in differing error codes for the same issues. These dif-
ferences, unless explicitly handled, slow down development even for experienced
engineers, since each manufacturer ships devices with own idiosyncrasies which
must be examined individually before proceeding with the implementation. They
also result in codebases which are virtually vendor locked-in and cannot be easily
migrated to other devices.

While there is a multitude of HSM devices and equivalent cloud services on the
market, their precise technical capabilities (such as maximum throughput for va-
rious cryptographic algorithms or storage capacity) are often non-transparent.
Even a question as fundamental as the choice between a cloud service and an
on-premise solution is plagued by unknowns. Most relevant information, such as
the complexity of administrative responsibilities, only comes to light during the
initial setup, while aspects like security concerns, such as third-party access to
stored keys or vulnerability to API-level weaknesses, remain hidden even beyond
this phase. Like with most choices surrounding computational infrastructure, there
is not a “catch-all” solution, ideal regardless of requirements. Unlike many such
choices, there are few data points regarding HSMs publicly available, making a
choice that optimally suits one’s requirements diffi cult.

Finally, using the cryptographic functionality offered by HSMs requires extensive
knowledge about the used API, the types and acceptable values for parameters
required for mechanism initialisation as well as various other workfl ows defi ned
by the standard (such as authentication, customization of parallelism, multi-part
operations, etc.). Furthermore, many cryptographic mechanisms, if improperly
initialised, or if used under unfavourable conditions, may cause the leaking of
sensitive information. Thus, a software developer looking to integrate an HSM in
their application must not only possess expertise with regards to cryptographic
algorithms, but also detailed knowledge of the mode of operation of the used
cryptographic devices.

2.2 Differences in standard implementations
across manufacturers

2.4 Deciding between various devices based
on requirements

2.3 Requirement of specialised expertise

Since much of the complexity surrounding the integration of HSMs is independent
of higher-level use-cases, we separated this integration into its own library which
aims to avoid pitfalls commonly found in these scenarios, from the prevention
of vulnerabilities to facilitating the use of cryptographic mechanisms via deve-
loper-friendly interfaces. Presently, four devices are supported: nCipher Connect
XC Base, AWS CloudHSM, Azure Dedicated HSM (using a Gemalto SafeNet Luna 7
model A7907) and the Ultimaco CryptoServer.

3 A more secure, versatile and easy-to-use
 approach

by the standard (such as authentication, customization of parallelism, multi-part
operations, etc.). Furthermore, many cryptographic mechanisms, if improperly
initialised, or if used under unfavourable conditions, may cause the leaking of
sensitive information. Thus, a software developer looking to integrate an HSM in
their application must not only possess expertise with regards to cryptographic
algorithms, but also detailed knowledge of the mode of operation of the used
cryptographic devices.

https://azure.microsoft.com/en-us/services/azure-dedicated-hsm/ 7

6 7Cognizant Mobility _ Hardware-Security-Model Cognizant Mobility _ Hardware-Security-Model

While the Cryptoki standard is structured in a way meant to avoid leaking sensiti-
ve information (such as private keys), it still leaves open many avenues of attack.
Many of these are handled by the security community through principles of best
practice (such as the principle of key separation, i.e. not using the same key for
different purposes) and are thus left at the developer’s discretion. Other vulnera-
bilities relying on inexact implementations of the standard or on usage errors can
also be exploited to extract sensitive material.

This led us to the decision to implement a mechanism capable of automati-
cally detecting and preventing vulnerabilities. While the Cryptoki API itself is
stateful, most of the exploits aiming to extract sensitive information rely on
individual calls rather than the state of the device, making their detection rela-
tively straightforward and inexpensive. This type of detection implies comparing
calls to HSMs to pre-defi ned patterns and raising alarms in case any matches are
found. In select cases, more complex processing operations are required, such as
fi nding a corresponding private key and examining its attributes when working
with a public key. In order to strike a balance between security, development
fl exibility, and performance, four security levels are defi ned, which ensure varying
degrees of protection:

The various preventions are particularly meant to enforce software quality stan-
dards, and thus prevent the accidental execution of cryptographic requests that
would result in the disclosure of information intended to remain within the phy-

sical confi nes of the HSM. This mechanism would also prevent the execution of
exploits using only interfaces offered by the application (e.g. REST APIs), it would
not, however, offer additional protection against attackers with the means of using
the PKCS #11 API to the HSM directly. For this purpose, the protections that are
part of this library would have to be implemented directly onto the devices them-
selves (or at least in the dynamic library used to transport PKCS #11 requests to
the device). Some manufacturers (e.g. nCipher or Thales) do, in fact, ship their
devices with various similar preventions, which may be a deciding factor when
choosing a device.

Finally, we also implemented a tool that automatically detects if a device is vul-
nerable by executing the corresponding exploits and verifying that the extracted
information is correct. These results should be considered before an HSM choice
is made.

3.1 Improving upon the standard –
preventing vulnerabilities

� Level 0: No protection.

� Level 1: Enforcement of the Cryptoki standard, i.e. preventing vulnerabilities
caused by non-compliant implementations. Contains preventions for W5, W6, W7.

� Level 2: Enforcement of best practices. In addition, contains preventions for W1,
W8, W9.

� Level 3: Maximum protection, which further restricts some operations, such as
granting certain privileges to imported keys. In addition, contains preventions
for W2, W3, W4.

As described previously, there are several differences in the ways various manufac-
turers implement the PKCS #11 standard. One example is the generation of keys
to be used when creating Message Authentication Codes, where nCipher devices
require the use of vendor-defi ned mechanisms rather than the ones set by the
standard. Other devices, such as the ones used by AWS CloudHSM set a maximum
buffer size of 16KB, necessitating multiple operations to encrypt, hash or sign data
blocks larger than this limit. Error handling for this HSM also deviates from the
norm, some error codes being returned in circumstances not covered by the stan-
dard. Many other similar deviations can be found in the devices covered by this
work, and we expect the list to grow with the addition of each new HSM.

If left unhandled, these types of differences would cause signifi cant complications
when trying to migrate an application from one device to another. The basic under-
lying functionality can be performed by each device, albeit with slightly differently
structured calls, so if these differences were handled explicitly and individually by
a layer of abstraction functioning between the application’s logic and the device,
migrating to a different HSM would have no effect on the codebase. Our library
offers a vendor-agnostic API, handling the translation of high-level cryptographic
requests to vendor-specifi c implementations of the PKCS #11 standard, and thus
allowing developers to focus on functionality rather than hardware integration.

3.2 Consolidating divergent standard implementations
under a single API

would result in the disclosure of information intended to remain within the phy-

The various preventions are particularly meant to enforce software quality stan-
dards, and thus prevent the accidental execution of cryptographic requests that
would result in the disclosure of information intended to remain within the phy-

work, and we expect the list to grow with the addition of each new HSM.

If left unhandled, these types of differences would cause signifi cant complications
when trying to migrate an application from one device to another. The basic under-
lying functionality can be performed by each device, albeit with slightly differently
structured calls, so if these differences were handled explicitly and individually by
a layer of abstraction functioning between the application’s logic and the device,
migrating to a different HSM would have no effect on the codebase. Our library
offers a vendor-agnostic API, handling the translation of high-level cryptographic
requests to vendor-specifi c implementations of the PKCS #11 standard, and thus
allowing developers to focus on functionality rather than hardware integration.

would result in the disclosure of information intended to remain within the phy-

3.1
 preventing vulnerabilities

8 9Cognizant Mobility _ Hardware-Security-Model Cognizant Mobility _ Hardware-Security-Model

In addition to the intricacies of the PKCS #11 standard and the complications in-
troduced by its divergent implementations, most plain cryptographic APIs, like the
one offered by JCA, require the user to have complex knowledge of the underly-
ing algorithms in question. Possible values for the various mechanism parameters
(mode, padding, key size, used hash or mask generation functions, defi nitions of
elliptic curves, etc.) must be known beforehand. Our library’s API takes advantage
of IDEs’ code completion features in the initialization of mechanisms, while also
simplifying high-level cryptographic requests (like encryption or decryption) to
only necessitate a single call. These differences are illustrated in the following:

The total amount of code necessary is reduced slightly, but our library’s API’s
real advantage is given by the fact that there is a lower pre-requirement of
knowledge to implement the same functionality. In the background, the relevant
calls are translated either to PKCS #11 heading to the integrated HSM, or to
JCA calls executed by the Bouncy Castle provider, depending on confi guration.
Thus, simplifi ed testing of business logic is made possible, one which does not
require connection to a physical device. In tandem, these features streamline
development and testing.

3.3 Developer-friendly interface to HSM functionality

As described in Chapter 2.4, deciding between different approaches to HSM infras-
tructure based on requirements is non-trivial and must often rely on scant infor-
mation. For this purpose, we conducted an analysis of the four devices supported
by our library in terms of various criteria:

As we have seen throughout this paper, HSMs, while oftentimes indispensable,
are also frequently very complex systems. From the choice of vendor, to the initial
setup and regular maintenance activities, to the integration and testing of security
applications, these devices require signifi cant, wide-ranging expertise. Our know-
ledge in this fi eld and approach to HSM management and usage result in faster,
more effi cient and more secure development processes.

Depending on the exact requirements, some criteria may be more relevant than ot-
hers, so the superiority of one device over another may change with requirements.
Some of these comparisons

3.4 Considering the pros and cons of various devices

4 Conclusion

� Performance with regards to their supported algorithms.

� Security (third party access, authentication mechanisms, vulnerability to explo-
its, additional protection mechanisms, etc.).

� Scalability and resilience.

� Storage capacity.

� Supported algorithms and APIs.

� Maintenance (backups, updates, monitoring, migration of keys, etc.).

� Partitioning (dividing keys into partitions to be used by different applications).

10 Cognizant Mobility _ Hardware-Security-Model Cognizant Mobility _ Hardware-Security-Model 11

